Vorkurs Informatik Wintersemester 2025/2026

Teil 7: Beweise

Mathematische Aussagen müssen bewiesen werden, um ihren Wahrheitsgehalt nachzuweisen. Ein *Beweis* ist der <u>formale Nachweis</u> der Richtigkeit einer Aussage mit Hilfe logischer Schlussfolgerungen.

Motivation

- Allgemeingültige Aussagen können nicht durch Beispiele bewiesen werden.
- Solange eine Aussage nicht bewiesen ist, kann es sein, dass sie falsch ist.
 - egal, wie viele Beispiele die Aussage belegen

Beispiel 1:

- Fermat-Zahlen: $F_n = 2^{2^n} + 1$
 - $F_0 = 3$ ist prim.
 - $F_1 = 5$ ist prim.
 - $F_2 = 17$ ist prim.
 - $F_3 = 257$ ist prim.
 - $F_4 = 65.537$ ist prim.
- Offenbar sind die ersten fünf Fermat-Zahlen prim! Wahrscheinlich sind alle F_n prim?!
- Vermutung (Fermat, 1640): Alle Fermat-Zahlen sind prim.
- Gegenbeweis (Euler, 1732): $F_5 = 4.294.967.297$ nicht prim! ($F_5 = 641 \cdot 6700417$)

Anmerkungen:

- Von vielen logischen Aussagen ist unbekannt, ob sie wahr oder falsch sind, z.B.
 - Zwischen je zwei aufeinanderfolgenden Quadratzahlen liegt mindestens eine Primzahl. (Legendresche Vermutung)
 - P = NP. (Größtes offenes Problem der theoretischen Informatik)
- Oftmals liegt das daran, dass bisher niemandem ein Beweis gelungen ist.
- Es existieren jedoch auch wahre Aussagen, von denen ein formaler Beweis aus logischen Gründen unmöglich ist. Solche Aussagen sind mit den Mitteln der Mathematik unbeweisbar. (→ Gödelscher Unvollständigkeitssatz)

- Leider können wir nicht erkennen, ob eine Aussage prinzipiell beweisbar ist.
 - Vielleicht sind die oben genannten unbewiesenen Aussagen unbeweisbar?
 - Das würde erklären, warum trotz einiger Mühe noch niemandem ein Beweis (oder Gegenbeweis) gelungen ist.
- In den folgenden Tagen werden wir verschiedene Beweistechniken kennen lernen.