Vorkurs Informatik Wintersemester 2025/2026

Teil 8: Direkter Beweis

Die am weitesten verbreitete Beweistechnik ist der direkte Beweis.

Vorüberlegung:

• Wir erinnern uns an folgende logische Implikation, den Modus Ponens:

$$((A \rightarrow B) \land A) \Rightarrow B$$

- Ist A wahr und ist A \rightarrow B wahr, dann ist B wahr.
- Die Subjunktion $A \to B$ "überträgt" also die Wahrheit von A auf B.
- Dieses Prinzip können wir erweitern zu einer Argumentationskette

$$A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \ldots \rightarrow B$$
.

- Ist die erste Aussage A₀ einer Argumentationskette wahr, dann
 - wird deren Wahrheit nach rechts auf alle weiteren Aussagen übertragen.
 - Insbesondere ist gezeigt, dass die Aussage B wahr ist.

1 Beweis einfacher Aussagen

Wir betrachten zunächst Beweise einfacher (= nicht zusammengesetzter) Aussagen.

Ziel: Wir wollen formal nachweisen, dass eine Aussage A wahr ist.

Beweisstruktur:

- Ausgangspunkt: Axiom (= beweislos als wahr akzeptierte Aussage) A₀
- Vorgehen: Ableiten einer Argumentationskette $A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow ... \rightarrow A$.
- Alle Zwischenschritte $A_i \to A_{i+1}$ müssen begründet sein, z. B. durch Anwendung von
 - Definitionen und Axiomen
 - bereits bewiesenen Sätzen
 - äquivalenten Umformungen
 - nachvollziehbaren Schlussfolgerungen.

Beispiel 1: Wir beweisen die Aussage: 6 ist gerade.

Beweis.

AussageBegründungen $6 = 3 \cdot 2$ (Axiom) $\rightarrow \exists m \in \mathbb{N}: 6 = 2 \cdot m$ (Axiom: $3 \in \mathbb{N}$) $\rightarrow 6$ ist gerade(Definition "gerade", Axiom: $6 \in \mathbb{N}$)

Analysieren wir diesen Beweis:

- Wir beginnen mit einer als wahr angenommenen Aussage: $6 = 3 \cdot 2$.
- Da 3 eine natürliche Zahl ist (wird hier beweislos als Axiom akzeptiert), können wir die vorangegangene Aussage zu dieser Existenzaussage abschwächen.

- Wir wenden nun die Definition "gerade" auf den Ausdruck an.
- Im Laufe des Beweises verwenden wir verschiedene Axiome: $6 = 3 \cdot 2$, $3 \in \mathbb{N}$, $6 \in \mathbb{N}$.
- Jeder einzelne Schritt ist begründet. Die Argumentationskette ist lückenlos.

Anmerkungen:

• Streng genommen haben wir nur folgende Implikation bewiesen:

$$(3 \in \mathbb{N} \land 6 \in \mathbb{N} \land 6 = 3 \cdot 2) \rightarrow 6$$
 ist gerade.

- Wir können keine Aussagen "aus dem luftleeren Raum heraus" beweisen. Wir benötigen stets einen Ausgangspunkt, auf dem wir den Beweis aufbauen. Das sind Axiome.
- Ein Großteil der Mathematik ist axiomatisch aufgebaut.

Aufgabe 1: Beweisen Sie mittels direktem Beweis:

- (a) 12 ist gerade.
- (b) 3 | 12
- (c) 1 < 4
- (d) 6 ist nicht prim.

2 Beweis von All-Aussagen

Ein Spezialfall liegt vor, wenn die zu beweisende Aussage eine All-Aussage ist.

Ziel: Beweis einer Aussage $\forall n \in \mathbb{N}$: A(n).

Beweisstruktur:

- Wir betrachten eine beliebige (= irgendeine, uns unbekannte) natürliche Zahl n.
 - Diese dient im Folgenden stellvertretend für *alle* natürlichen Zahlen.
 - Alle Aussagen über n gelten somit für allgemein für alle natürlichen Zahlen.
- Ausgangspunkt (*Prämisse*): $n \in \mathbb{N}$.
- Vorgehen: Ableiten einer Argumentationskette

$$n \in \mathbb{N} \to A_1(n) \to A_2(n) \to \ldots \to A(n)$$
.

- Alle Zwischenschritte müssen begründet sein, z. B. durch Anwendung von
 - Definitionen und Axiomen
 - bereits bewiesenen Sätzen
 - äquivalenten Umformungen
 - nachvollziehbaren Schlussfolgerungen.

Beispiel 2: Wir beweisen die Aussage: $\forall n \in \mathbb{N}$: 4n + 6 ist gerade.

Beweis. Sei n eine beliebige natürliche Zahl.

Aussage	Begründung
$\mathfrak{n}\in\mathbb{N}$	(Prämisse)
$2n+3\in\mathbb{N}$	(Wenn $\mathfrak{m},\mathfrak{n},k\in\mathbb{N}$, dann $\mathfrak{m}\cdot\mathfrak{n}+k\in\mathbb{N}$)
$2\cdot(2n+3)\in\mathbb{N}$	(Wenn $\mathfrak{m},\mathfrak{n}\in\mathbb{N}$, dann $\mathfrak{m}\cdot\mathfrak{n}\in\mathbb{N}$)
$2 \cdot (2n+3)$ ist gerade	(Definition "gerade")
4n + 6 ist gerade	$(2 \cdot (2n+3) = 4n+6)$
	· ·

Interessant ist der vorletzte Schritt. Wir durften die Definition "gerade" anwenden, weil wir zuvor gezeigt haben, dass

- $2 \cdot (2n + 3)$ eine natürliche Zahl ist, und dass
- 2n + 3 eine natürliche Zahl ist.

Aufgabe 2: Beweisen Sie die folgenden Aussagen mittels direkter Beweise:

- (a) $\forall n \in \mathbb{N}: 1 \mid n$
- (b) Für alle natürlichen Zahlen a, b gilt: $a \mid (ab)$.
- (c) Für alle $n \in \mathbb{N}$ gilt: 6n + 5 ist ungerade.
- (d) Für alle $n \in \mathbb{N}$ gilt: $n^2 + 2n + 1$ ist nicht prim.

3 Beweis von Implikationen

Der häufigste Anwendungsfall direkter Beweise sind Aussagen $\forall n \in \mathbb{N} \colon A(n) \to B(n)$.

Ziel: Nachweis der All-Aussage $\forall n \in \mathbb{N} : A(n) \to B(n)$.

Beweisstruktur

- Wir betrachten eine beliebige natürliche Zahl n.
- Ausgangspunkt (*Prämisse*): A(n).
- Vorgehen: Ableiten einer Argumentationskette

$$A(n) \rightarrow A_1(n) \rightarrow A_2(n) \rightarrow ... \rightarrow B(n)$$
.

- Alle Zwischenschritte müssen begründet sein, z. B. durch
 - Anwendung von Definitionen
 - Anwendung bereits bewiesener Sätze
 - Äquivalente Umformungen
 - Nachvollziehbare Schlussfolgerungen

Beispiel 3: Wir beweisen folgenden Satz.

Satz 1. Für alle $n \in \mathbb{N}$ gilt: Wenn n durch 4 teilbar ist, dann ist n auch durch 2 teilbar.

Der Satz hat die Struktur $\forall n \in \mathbb{N} \colon A(n) \to B(n)$.

- A(n): 4 | n
- B(n): 2 | n

Beweis. Sei $n \in \mathbb{N}$ eine beliebige natürliche Zahl.

	Aussage	Begründung
	4 n	(Prämisse)
\rightarrow	$\exists \mathfrak{m} \in \mathbb{N} \colon \mathfrak{n} = 4\mathfrak{m}$	(Definition "teilbar")
\rightarrow	$\exists m \in \mathbb{N} \colon n = 2 \cdot 2m$	$(4=2\cdot 2)$
\rightarrow	$\exists k \in \mathbb{N} \colon n = 2k$	(Wenn $\mathfrak{m} \in \mathbb{N}$, dann $k = 2\mathfrak{m} \in \mathbb{N}$)
\rightarrow	2 n	(Defintion "teilbar")

Beispiel 4: Wir beweisen folgenden Satz:

Satz 2. Für alle $n \in \mathbb{N}$ gilt: Wenn n gerade ist, dann ist n^2 ebenfalls gerade.

Der Satz hat die Struktur $\forall n \in \mathbb{N} \colon A(n) \to A(n^2)$.

• A(x): x ist gerade.

Beweis. Sei $n \in \mathbb{N}$ eine beliebige natürliche Zahl.

	Aussage	Begründung
	n ist gerade	(Prämisse)
\rightarrow	$\exists \mathfrak{m} \in \mathbb{N} \colon \mathfrak{n} = 2\mathfrak{m}$	(Definition "gerade")
\rightarrow	$\exists m \in \mathbb{N} \colon n^2 = (2m)^2$	(Beidseitiges Quadrieren erhält Gleichheit)
\rightarrow	$\exists m \in \mathbb{N} \colon n^2 = 2 \cdot 2m^2$	(Potenzgesetze)
\rightarrow	$\exists k \in \mathbb{N} \colon n^2 = 2 \cdot k$	(Wenn $\mathfrak{m} \in \mathbb{N}$, dann $k = 2\mathfrak{m}^2 \in \mathbb{N}$)
\rightarrow	n ² ist gerade.	(Definition "gerade")

Aufgabe 3: Beweisen Sie folgende Aussagen mittels direkter Beweise:

- (a) Für alle natürlichen m, n gilt: Wenn n < m, dann $n^2 < m^2$.
- (b) Für alle $m, n \in \mathbb{N}$ gilt: Wenn m gerade ist, dann ist $m \cdot n$ gerade.
- (c) Die Summe zweier gerader natürlicher Zahlen ist gerade.
- (d) Für alle $x, y, z \in \mathbb{N}$ gilt: Wenn x < y, dann x + z < y + z.
- (e) Für alle $x, y, z \in \mathbb{N}$ gilt: Aus x < y und y < z folgt x < z.
- (f) $\forall a, b, c \in \mathbb{N}$: $(a \mid b) \land (b \mid c) \rightarrow (a \mid c)$
- (g) $\forall a, b, c, x, y \in \mathbb{N} \colon (a \mid b) \land (a \mid c) \rightarrow (a \mid (xb + yc))$

4 Beweis von Äquivalenzen

Ebenfalls sehr häufig sind direkte Beweise für Aussagen der Form $\forall n \in \mathbb{N} \colon A(n) \leftrightarrow B(n)$.

Ziel: Nachweis der All-Aussage $\forall n \in \mathbb{N} \colon A(n) \leftrightarrow B(n)$.

Vorüberlegung:

• Wir haben zuvor gesehen, dass $A \leftrightarrow B$ logisch äquivalent ist zu $(A \to B) \land (B \to A)$.

Beweisstruktur

- Beweis der *Hin-Richtung*: $\forall n \in \mathbb{N}$: $A(n) \to B(n)$
- Beweis der Rück-Richtung: $\forall n \in \mathbb{N} \colon B(n) \to A(n)$
- Beide Teile des Beweises können *unabhängig* voneinander bewiesen werden.
- Für die beiden Richtungen können verschiedene Beweistechniken verwendet werden.

Beispiel 5: Wir beweisen folgenden Satz.

Satz 3. Für alle natürlichen Zahlen m und n gilt: n < m genau dann, wenn $m - n \in \mathbb{N}$.

Der Satz hat die Struktur $\forall m, n \in \mathbb{N}$: $n < m \leftrightarrow m - n \in \mathbb{N}$.

• Hin-Richtung: Zu zeigen ist: $\forall m, n \in \mathbb{N}$: $n < m \to m - n \in \mathbb{N}$.

Beweis. Seien m, n beliebige natürliche Zahlen. Es gilt

	Aussage	Begründung
	n < m	(Prämisse)
\rightarrow	$\exists k \in \mathbb{N} \colon \mathfrak{m} = k + \mathfrak{n}$	(Definition "kleiner")
\rightarrow	$\exists k \in \mathbb{N} \colon m-n=k+n-n$	(Beidseitige Subtr. von n erhält Gleichheit)
\rightarrow	$\exists k \in \mathbb{N} \colon m-n=k$	$(\forall x \in \mathbb{R} \colon x - x = 0)$
\rightarrow	$\mathfrak{m}-\mathfrak{n}\in\mathbb{N}$	(Konkretisieren)

 \Box

• Rück-Richtung: Zu zeigen ist: $\forall m, n \in \mathbb{N}$: $m - n \in \mathbb{N} \to n < m$.

Beweis. Seien m, n beliebige natürliche Zahlen. Es gilt

	Aussage	Begründung
	$\mathfrak{m}-\mathfrak{n}\in\mathbb{N}$	(Prämisse)
\rightarrow	$\exists k \in \mathbb{N} \colon m-n=k$	(Umformulierung vorangegangener Aussage)
\longrightarrow	$\exists k \in \mathbb{N} \colon m-n+n=k+n$	(Beidseitige Addition. von n erhält Gleichheit)
\longrightarrow	$\exists k \in \mathbb{N} \colon m = k + n$	$(\forall x \in \mathbb{R} \colon x - x = 0)$
\rightarrow	$\mathfrak{n}<\mathfrak{m}\in\mathbb{N}$	(Definition "kleiner")

Hier haben wir einen Beweis, in dem die Hinrichtung eine *Umkehrung* der Rückrichtung ist, und umgekehrt. Das liegt daran, dass jeder Schritt der Argumentationskette *umkehrbar* ist. (Es handelt sich bei den Zwischenschritten nicht nur um Implikationen, sondern um Äquivalenzen.) Wenn dies der Fall ist, können wir beide Richtungen des Beweises in einem Schritt abhandeln:

Beweis. Seien m, n beliebige natürliche Zahlen. Es gilt

$\begin{array}{lll} & \textbf{Aussage} & \textbf{Begründung} \\ & n < m & \\ & \leftrightarrow & \exists k \in \mathbb{N} \colon m = k + n & \text{(Definition "kleiner")} \\ & \leftrightarrow & \exists k \in \mathbb{N} \colon m - n = k + n - n & \text{(Beidseitige Subtr. von n erhält Gleichheit)} \\ & \leftrightarrow & \exists k \in \mathbb{N} \colon m - n = k & \text{(} \forall x \in \mathbb{R} \colon x - x = 0\text{)} \\ & \leftrightarrow & m - n \in \mathbb{N} & \text{(Umformulierung)} \end{array}$